

Sample Tester

The sample tester allows defining tests once and applying them to
semantically identical executables (typically runnable code samples)
instantiated in multiple languages and environments.

Contents:

	Installation

	Defining tests
	Testplan

	Manifest file format

	Tags for sample-tester

	Running tests
	Command-line flags

Installation

(optional) Activate your preferred virtual environment:

. PATH/TO/YOUR/VENV/bin/activate

Install the necessary packages:

pip install pyyaml # needs to be installed before sample-tester
pip install sample-tester

This will put the command sample-tester in your path.

Defining tests

To execute a test, you will need:

	A “test plan”, defined via one or more *.yaml files. Here’s an
example:

language.test.yaml

test:
 suites:
 - name: "Language samples test"
 setup: # can have yaml and/or code, just as in the cases below
 - code:
 log('In setup "hi"')
 teardown: # can have yaml and/or code, just as in the cases below
 - code:
 log('In teardown bye')
 cases:

 - name: "A test defined via yaml directives"
 spec:
 - call:
 sample: "language_analyze_sentiment_text"
 params:
 content:
 literal: "happy happy smile hope"
 - assert_success: [] # try assert_failure to see how failure looks
 - assert_contains:
 - message: "Score is very positive"
 - literal: "score: 0.8"
 - assert_contains:
 - message: "Magnitude is very positive"
 - literal: "magnitude: 0.8"
 - assert_not_contains:
 - message: "Random message"
 - literal: "The rain in Spain falls mainly in the plain"

See the Testplan page for
information on the yaml directives available in the testplan, and
how to use them directly via embedded Python code.

	A “manifest”, defined via one or more *.manifest.yaml
files. Here’s an example:

language.manifest.yaml

version: 2
sets:
- environment: java
 invocation: "{jar} -D{class} {path} @args"
 path: "examples/mock-samples/java/"
 __items__:
 - class: AnalyzeSentiment
 jar: "./do_java"
 chdir: "examples/mock-samples/java/"
 path: "language-v1/AnalyzeSentiment"
 sample: "language_analyze_sentiment_text"
- environment: python
 bin: "python3"
 path: "examples/mock-samples/python/"
 __items__:
 - path: "language-v1/analyze_sentiment_request_language_sentiment_text.py"
 sample: "language_analyze_sentiment_text"
- environment: bash
 # notice: no "bin:" because artifacts are already executable
 path: "examples/mock-samples/sh/"
 __items__:
 - path: "language-v1/analyze_sentiment.sh"
 sample: "language_analyze_sentiment_text"

See the Manifest file format page for an
explanation of the manifest.

References:

	Testplan

	Manifest file format

	Tags for sample-tester

Testplan

One of the inputs to sample-tester is the “testplan”, which outlines
how to run the samples and what checks to perform.

	The testplan can be spread over any number of TESTPLAN.yaml
files.

	You can have any number of test suites.

	Each test suite can have setup, teardown, and cases
sections.

	The cases section is a list of test cases. For _each_ test
case, setup is executed before running the test case and
teardown is executed after.

	setup, teardown and each cases[...].spec is a list of
directives and arguments. The directives can be any of the
following YAML directives:

	log: print the arguments, printf style

	uuid: return a uuid (if called from yaml, assign it to the
variable names as an argument)

	shell: run in the shell the command specified in the argument

	call: call the artifact named in the argument; error if the
call fails

	call_may_fail: call the artifact named in the argument; do
not error even if the call fails

	assert_contains: require the given variable to contain a
string; abort the test case otherwise

	assert_not_contains: require the given variable to not
contain a string; abort the test case otherwise

	assert_success: require that the exit code of the last
call_may_fail was 0; abort the test case otherwise. If the
preceding call was a just a call, it would have already
failed on a non-zero exit code.

	assert_failure: require that the exit code of the last
call_may_fail or call was NOT 0; abort the test case
otherwise. Note, though, that if we’re executing this after just
a call, it must have succeeded so this assertion will fail.

	env: assign the value of an environment variable to a
test case variable

	extract_match: extrack regex matches into local variables

	code: execute the argument as a chunk of Python code. The
other directives above are available as Python calls with the
names above. In addition, the following functions are available
inside Python code only:

	fail: mark the test as having failed, but continue executing

	abort: mark the test as having failed and stop executing

	assert_that: if the condition in the first argument is
false, abort the test case

Here is an informative instance of a sample testfile:

test:
 suites:
 - name: "Language samples test"
 setup: # can have yaml and/or code, just as in the cases below
 - code:
 log('In setup "hi"')
 teardown: # can have yaml and/or code, just as in the cases below
 - code:
 log('In teardown bye')
 cases:

 - name: "A test defined via yaml directives"
 spec:
 - call:
 sample: "language_analyze_sentiment_text"
 params:
 content:
 literal: "happy happy smile hope"
 - assert_success: [] # try assert_failure to see how failure looks
 - assert_contains:
 - message: "Score is very positive"
 - literal: "score: 0.8"
 - assert_contains:
 - message: "Magnitude is very positive"
 - literal: "magnitude: 0.8"
 - assert_not_contains:
 - message: "Random message"
 - literal: "The rain in Spain falls mainly in the plain"
Above is the typical usage

 - name: "A test defined via 'code'"
 spec:
 - code: |
 out = call("language_analyze_sentiment_text", content="happy happy smile hope")
 assert_success("that should have worked", "well")
 import re

 score_found = re.search('score: ([0123456789.]+)', out)
 assert_that(score_found is not None, 'score matches regexp')
 score = float(score_found.group(1))
 assert_that(score > 0.7, 'score is high')

 magnitude_found = re.search('magnitude: ([0123456789.]+)', out)
 assert_that(magnitude_found is not None, 'magnitude matches regexp')
 magnitude = float(magnitude_found.group(1))
 assert_that(magnitude > 0.7, 'magnitude is high')

 assert_not_contains("random message", "the rain in Spain")

 - name: "A test defined via 'code', with explicit calls to specific samples"
 spec:
 - code: |
 _, out = shell("python3 examples/mock-samples/python/language-v1/analyze_sentiment_request_language_sentiment_text.py -content='happy happy smile hope'")

 # You can interleave yaml and code!
 - assert_success:
 - "that should have worked {}"
 - well

 - code: |
 import re

 score_found = re.search('score: ([0123456789.]+)', out) # TODO: Can this be negative?
 assert_that(score_found is not None, 'score matches regexp')
 score = float(score_found.group(1))
 assert_that(score > 0.7, 'score is high')
 home = env('HOME')
 log('home directory: {}'.format(home))

 magnitude_found = re.search('magnitude: ([0123456789.]+)', out)
 assert_that(magnitude_found is not None, 'magnitude matches regexp')
 magnitude = float(magnitude_found.group(1))
 assert_that(magnitude > 0.7, 'magnitude is high')

This test plan has three equivalent representations of the same test,
one with canonical artifact paths in the declarative style (using YAML
directives), the second with canonical artifact paths in the
imperative style (using a code block), and the third using
absolute artifact paths in the imperative style (which you would
rarely use, since th point of this tool is to not have to hardcode
different paths to semantically identical samples).

Unless you specify explicit paths to each sample (which means your
test plan cannot run for different languages/environments
simultaneously), you will need one or more manifest files
(*.manifest.yaml) listing the path and identifiers for each sample
in each language/environment. . Refer to the
Manifest file format page for an explanation of
the structure of the *.manifest.yaml files.

Manifest file format

A manifest file is a YAML file that associates each artifact (sample)
of interest on disk with a series of tags that can be used to uniquely
identify that artifact. Right now both versions “1” and “2” of the
manifest file format are supported; version “2” is a superset of
version “1”.

The fundamental unit in a manifest is the “item”, which is a
collection of tag name/value pairs; each unit should correspond to
exactly one artifact on disk.

Since a lot of the artifacts will share part or all of some tags
(for example, the initial directory components, or the binary used to
execute them), “items” are grouped into “sets”. Each set may define
its own tag name/value pairs. These pairs are applied to each of the
items inside the set as follows:

	If the item does not define a given tag name, then the tag
name/value pair in its set is applied to the item.

	If the item does define a given tag name, then the corresponding
tag value specified in the set is prepended to the corresponding
value specified in the item. This is particularly useful in the
case of paths: the set may define the common path for all of its
items, and each item specifies its unique trailing directories and
filename.

In manifest version “2”, tag values can include references to other
tags: the value of tag “A” can reference the value of tag “B” by
enclosing the name of tag “B” in curly brackets: {TAG_B_NAME}. For
example:

name: Zoe
greeting: "Hello, {name}!

will define the same sets of tags as

name: Zoe
greeting: "Hello, Zoe!"

While tags can be referenced arbitrarily deep, no reference can form a
loop (ie a tag directly or indirectly including itself).

Tags for sample-tester

Some manifest tags are of special interest to the sample test runner:

	sample: The unique ID for the sample.

	path: The path to the sample source code on disk.

	environment: A label used to group samples that share the same
programming language or execution environment. In particular,
artifacts with the same sample but different environments
are taken to represent the same conceptual sample, but implemented
in the different languages/environments; this allows a test
specification to refer to the samples only and sample-tester
will then run that test for each of the environments
available.

	invocation: The command line to use to run the sample. The
invocation typically makes use of two features for flexibility:

	manifest tag inclusion: By including a {TAG_NAME},
invocation (just like any tag) can include the value of
another tag.

	tester argument substitution: By including a @args literal,
the invocation tag can specify where to insert the sample
parameters as determined by the sample-tester from the test plan
file.

Thus, the following would be the typical usage for Java, where each
sample item in the manifest includes a class_name tag and a
jar tag:

invocation: "java {jar} -D{class_name} -Dexec.arguments='@args'"

	(deprecated) bin: The executable used to run the sample. The
sample path and arguments are appended to the value of this tag
to form the command line that the tester runs.

Advanced usage: you can tell sample-tester to use different key names than the ones above. For example, to use keys some_name, how_to_call, and switch_path instead of sample, invocation, and chdir, respectively, you would simply specify this flag when calling sample-tester:

-c tag:some_name:how_to_call,switch_path

Here’s a typical manifest file:

version: 2
sets:
- environment: java
 invocation: "{jar} -D{class} {path} @args"
 path: "examples/mock-samples/java/"
 __items__:
 - class: AnalyzeSentiment
 jar: "./do_java"
 chdir: "examples/mock-samples/java/"
 path: "language-v1/AnalyzeSentiment"
 sample: "language_analyze_sentiment_text"
- environment: python
 bin: "python3"
 path: "examples/mock-samples/python/"
 __items__:
 - path: "language-v1/analyze_sentiment_request_language_sentiment_text.py"
 sample: "language_analyze_sentiment_text"
- environment: bash
 # notice: no "bin:" because artifacts are already executable
 path: "examples/mock-samples/sh/"
 __items__:
 - path: "language-v1/analyze_sentiment.sh"
 sample: "language_analyze_sentiment_text"

Running tests

To run the tests you have defined, do the following:

	Prepare your environment. For example, to run tests against Google
APIs, ensure you have credentials set up:

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/your/creds.json

	Run the tester, specifying your manifest (any number of
*.manifest.yaml files) and test plan (any number of other
*.yaml files):

sample-tester examples/convention-tag/language.test.yaml examples/convention-tag/language.manifest.yaml

References:

	Command-line flags
	Basic usage

	Advanced usage

Command-line flags

Basic usage

sampletester TEST.yaml [TEST.yaml ...] [MANIFEST.manifest.yaml ...]
 [--envs=REGEX] [--suites=REGEX] [--cases=REGEX]
 [--fail-fast]

where:

	there can be any number of TEST.yaml testplan files

	there can be any number of MANIFEST.manifest.yaml manifest files

	--envs, --suites, and --cases are Python-style regular
expressions (beware shell-escapes!) to select which environments,
suites, and cases to run, based on their names. All the
environemnts, suites, or cases will be selected to run by default if
the corresponding flag is not set. Note that if an environment is
not selected, its suites are not selected regardless of
--suites; if a suite is not selected, its testcases are not
selected regardless of --cases.

	--fail-fast makes execution stop as soon as a failing test case
is encountered, without executing any remaining test cases.

Controlling the output

In all cases, sample-tester exits with a non-zero code if there were any errors in the flags, test config, or test execution.

In addition, by default sampletester prints the status of test cases to stdout. This output is controlled by the following flags:

	--verbosity (-v): controls how much output to show for passing tests. The default is a “summary” view, but “quiet” (no output) and “detailed” (full case output) options are available.

	--suppress_failures (-f): Overrides the default behavior of showing output for failing test cases, regardless of the --verbosity setting

	--xunit=FILE outputs a test summary in xUnit format to FILE (use - for stdout).

Advanced usage

The tester uses a “convention” to match sample names in the testplan
to actual, specific files on disk for given languages and
environments. Each convention may choose to take some set-up
arguments. You can specify an alternate convention and/or convention
arguments via the flag --convention=CONVENTION:ARG,ARGS. The
default convention is tag:sample, which uses the
sample key in the manifest files. To use, say, the target
key in the manifest, simply pass --convention=tag:target.

If you want to define an additional convention, refer to the
documention in the repo on how to do so. If you do have such an
additional convention defined, you may use the --convention flag
to select it and give it any desired arguments, as above.

Index

 nav.xhtml

 Table of Contents

 		
 Sample Tester

 		
 Installation

 		
 Defining tests

 		
 Testplan

 		
 Manifest file format

 		
 Tags for sample-tester

 		
 Running tests

 		
 Command-line flags

 		
 Basic usage

 		
 Advanced usage

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

