
Sample Tester Documentation
Release 0.15.1

Victor Chudnovsky

Jun 27, 2019

Contents:

1 Installation 3

2 Defining tests 5
2.1 Testplan . 6
2.2 Manifest file format . 9
2.3 Tags for sample-tester . 11

3 Running tests 13
3.1 Command-line flags . 13

i

ii

Sample Tester Documentation, Release 0.15.1

The sample tester allows defining tests once and applying them to semantically identical executables (typically
runnable code samples) instantiated in multiple languages and environments.

Contents: 1

Sample Tester Documentation, Release 0.15.1

2 Contents:

CHAPTER 1

Installation

(optional) Activate your preferred virtual environment:

. PATH/TO/YOUR/VENV/bin/activate

Install the necessary packages:

pip install pyyaml # needs to be installed before sample-tester
pip install sample-tester

This will put the command sample-tester in your path.

3

Sample Tester Documentation, Release 0.15.1

4 Chapter 1. Installation

CHAPTER 2

Defining tests

To execute a test, you will need:

1. A “test plan”, defined via one or more *.yaml files. Here’s an example:

Listing 1: language.test.yaml

test:
suites:
- name: "Language samples test"

setup: # can have yaml and/or code, just as in the cases below
- code:

log('In setup "hi"')
teardown: # can have yaml and/or code, just as in the cases below

- code:
log('In teardown bye')

cases:

- name: "A test defined via yaml directives"
spec:
- log:

- 'Reading from manifest at {language_analyze_sentiment_text:@manifest_
→˓source}'

- call:
sample: "language_analyze_sentiment_text"
params:
content:
literal: "happy happy smile hope"

- assert_success: [] # try assert_failure to see how failure looks
- assert_contains:

- message: "Have score and magnitude"
- literal: "score"
- literal: "magnitude"

- assert_contains_any:
- message: "Have magnitude or strength"
- literal: "strength"

(continues on next page)

5

Sample Tester Documentation, Release 0.15.1

(continued from previous page)

- literal: "magnitude"
- assert_contains:

- message: "Score is very positive"
- literal: "score: 0.8"

- assert_contains:
- message: "Magnitude is very positive"
- literal: "magnitude: 0.8"

- assert_excludes:
- message: "Random message"
- literal: "The rain in Spain falls mainly in the plain"

See the Testplan page for information on the yaml directives available in the testplan, and how to use them
directly via embedded Python code.

2. A “manifest”, defined via one or more *.manifest.yaml files. Here’s an example:

Listing 2: language.manifest.yaml

type: manifest/samples
schema_version: 3
samples:
- environment: java
invocation: "{jar} -D{class} {path} @args"
path: "examples/mock-samples/java/language-v1/AnalyzeSentiment"
class: AnalyzeSentiment
jar: "./do_java"
chdir: "examples/mock-samples/java/"
sample: "language_analyze_sentiment_text"

- environment: python
bin: "python3"
path: "examples/mock-samples/python/language-v1/analyze_sentiment_request_

→˓language_sentiment_text.py"
sample: "language_analyze_sentiment_text"

- environment: bash
notice: no "bin:" because artifacts are already executable
path: "examples/mock-samples/sh/language-v1/analyze_sentiment.sh"
sample: "language_analyze_sentiment_text"

See the Manifest file format page for an explanation of the manifest.

2.1 Testplan

One of the inputs to sample-tester is the “testplan”, which outlines how to run the samples and what checks to perform.

1. The testplan can be spread over any number of TESTPLAN.yaml files.

2. You can have any number of test suites.

3. Each test suite can have setup, teardown, and cases sections.

4. The cases section is a list of test cases. For _each_ test case, setup is executed before running the test case
and teardown is executed after.

5. setup, teardown and each cases[...].spec is a list of directives and arguments. The directives can be
any of the following YAML directives:

6 Chapter 2. Defining tests

Sample Tester Documentation, Release 0.15.1

• log: print the arguments, printf style.

– Substrings of the form {} are interpolated with the corresponding positional arguments specified

– Substrings of the form {id:name} are substituted with the value of the manifest tag correspond-
ing to the key name for the sample identified by id. This can be useful when debugging your
test to make sure that all the tags are as you expect.

* id must resolve to a sample ID specified in the manifest file

* if name does not match any tag key for the sample id, the substring is substituted with the
empty string

* if name is not specified, the substring is substituted with a serialized representation of all the
tags specified for the sample id

• uuid: return a uuid (if called from yaml, assign it to the variable names as an argument)

• shell: run in the shell the command specified in the argument

• call: call the artifact named in the argument; error if the call fails

• call_may_fail: call the artifact named in the argument; do not error even if the call fails

• assert_contains: require the output of the last call* to contain all of the strings provided (case-
insensitively); abort the test case otherwise

• assert_excludes_all: require the output of the last call* to not contain any of the strings pro-
vided (case-insensitively); abort the test case otherwise

• assert_contains_any: require the output of the last call* to contain at least one of the strings
provided (case-insensitively); abort the test case otherwise

• assert_excludes_any: require the output of the last call* to not contain at least one of the strings
provided (case-insensitively); abort the test case otherwise

• assert_success: require that the exit code of the last call_may_fail was 0; abort the test case
otherwise. If the preceding call was a just a call, it would have already failed on a non-zero exit code.

• assert_failure: require that the exit code of the last call_may_fail or call was NOT 0; abort
the test case otherwise. Note, though, that if we’re executing this after just a call, it must have succeeded
so this assertion will fail.

• env: assign the value of an environment (identified by variable) variable to a test case variable (given
by name)

• extract_match: extrack regex matches into local variables

• code: execute the argument as a chunk of Python code. The other directives above are available as Python
calls with the names above. In addition, the following functions are available inside Python code only:

– fail: mark the test as having failed, but continue executing

– abort: mark the test as having failed and stop executing

– assert_that: if the condition in the first argument is false, abort the test case

Here is an informative instance of a sample testfile:

test:
suites:
- name: "Language samples test"
setup: # can have yaml and/or code, just as in the cases below

- code:
log('In setup "hi"')

(continues on next page)

2.1. Testplan 7

Sample Tester Documentation, Release 0.15.1

(continued from previous page)

teardown: # can have yaml and/or code, just as in the cases below
- code:

log('In teardown bye')
cases:

- name: "A test defined via yaml directives"
spec:
- log:

- 'Reading from manifest at {language_analyze_sentiment_text:@manifest_
→˓source}'

- call:
sample: "language_analyze_sentiment_text"
params:

content:
literal: "happy happy smile hope"

- assert_success: [] # try assert_failure to see how failure looks
- assert_contains:

- message: "Have score and magnitude"
- literal: "score"
- literal: "magnitude"

- assert_contains_any:
- message: "Have magnitude or strength"
- literal: "strength"
- literal: "magnitude"

- assert_contains:
- message: "Score is very positive"
- literal: "score: 0.8"

- assert_contains:
- message: "Magnitude is very positive"
- literal: "magnitude: 0.8"

- assert_excludes:
- message: "Random message"
- literal: "The rain in Spain falls mainly in the plain"

Above is the typical usage

- name: "A test defined via 'code'"
spec:
- code: |

log('Reading from manifest at {language_analyze_sentiment_text:@manifest_
→˓source}')

out = call("language_analyze_sentiment_text", content="happy happy smile
→˓hope")

assert_success("that should have worked", "well")

assert_contains('score', 'magnitude', message='Have both score and magnitude
→˓')

assert_contains_any('strength', 'magnitude', message='Have either strength
→˓or magnitude')

import re

score_found = re.search('score: ([0123456789.]+)', out)
assert_that(score_found is not None, 'score matches regexp')
score = float(score_found.group(1))
assert_that(score > 0.7, 'score is high')

(continues on next page)

8 Chapter 2. Defining tests

Sample Tester Documentation, Release 0.15.1

(continued from previous page)

magnitude_found = re.search('magnitude: ([0123456789.]+)', out)
assert_that(magnitude_found is not None, 'magnitude matches regexp')
magnitude = float(magnitude_found.group(1))
assert_that(magnitude > 0.7, 'magnitude is high')

assert_excludes("the rain in Spain", message="random message")

- name: "A test defined via 'code', with explicit calls to specific samples"
spec:
- code: |

, out = shell("python3 examples/mock-samples/python/language-v1/analyze
→˓sentiment_request_language_sentiment_text.py -content='happy happy smile hope'")

You can interleave yaml and code!
- assert_success:

- "that should have worked {}"
- well

- code: |
import re

score_found = re.search('score: ([0123456789.]+)', out) # TODO: Can this
→˓be negative?

assert_that(score_found is not None, 'score matches regexp')
score = float(score_found.group(1))
assert_that(score > 0.7, 'score is high')
home = env('HOME')
log('home directory: {}'.format(home))

magnitude_found = re.search('magnitude: ([0123456789.]+)', out)
assert_that(magnitude_found is not None, 'magnitude matches regexp')
magnitude = float(magnitude_found.group(1))
assert_that(magnitude > 0.7, 'magnitude is high')

This test plan has three equivalent representations of the same test, one with canonical artifact paths in the declarative
style (using YAML directives), the second with canonical artifact paths in the imperative style (using a code block),
and the third using absolute artifact paths in the imperative style (which you would rarely use, since th point of this
tool is to not have to hardcode different paths to semantically identical samples).

Unless you specify explicit paths to each sample (which means your test plan cannot run for different lan-
guages/environments simultaneously), you will need one or more manifest files (*.manifest.yaml) listing the
path and identifiers for each sample in each language/environment. . Refer to the Manifest file format page for an
explanation of the structure of the *.manifest.yaml files.

2.2 Manifest file format

A manifest contains one or more YAML documents that associate each artifact (sample) of interest on disk with a series
of metadata tags. The YAML documents within the file are separated by the usual YAML start-document indicator,
---.

A manifest YAML document has the general structure:

type: manifest/XXX

(continues on next page)

2.2. Manifest file format 9

Sample Tester Documentation, Release 0.15.1

(continued from previous page)

schema_version: 3
XXX:
- item1foo: value

item1bar: value

1. The “manifest” in the type field defines this YAML document as a manifest. Other document types are silently
ignored (this permits putting disparate YAML documents in the same file if desired).

2. The arbitrary value “XXX” in the type field defines the top-level YAML field XXX as containing the actual
manifest.

3. The schema_version field is required.

4. Each item in the XXX list is simply a dictionary of tag keys and values. The tag keys that define the metadata
used by sample-tester are described below.

5. Other top-level tags (outside of the XXX list) are ignored. They can thus be used for additional metadata not used
by sample-tester, and/or for defining YAML anchors in order to reduce duplication in the manifest document.

Tag values can include references to other tags: the value of tag “A” can reference the value of tag “B” by enclosing
the name of tag “B” in curly brackets: {TAG_B_NAME}. For example:

name: Zoe
greeting: "Hello, {name}!

will define the same sets of tags as

name: Zoe
greeting: "Hello, Zoe!"

While tags can be referenced arbitrarily deep, no reference can form a loop (ie a tag directly or indirectly including
itself).

Here’s a generic manifest file illustrating these features:

type: manifest/samples
schema_version: 3
samples:
- environment: python

bin: python3
path: "/home/nobody/api/samples/trivial/method/sample_alice"
sample: "alice"
canonical: "trivial"

- environment: python
bin: python3
path: "/home/nobody/api/samples/complex/method/usecase_bob"
sample: "robert"
tag: "guide"

A manifest file can contain any number of manifest documents, each
preceded by the YAML `---` document separator.

In this second YAML document, we make use of YAML anchors (`&`) and
references (`*`) as well as the manifest file inclusion semantics
(`{}`) to illustrate how fields common to multiple elements of the

(continues on next page)

10 Chapter 2. Defining tests

Sample Tester Documentation, Release 0.15.1

(continued from previous page)

list may be factored out to reduce code duplication and increase
understandability.

type: manifest/samples
schema_version: 3
python: &python
- environment: python

bin: python3 # used to run these items
base_path: "/home/nobody/api/samples/"

samples:
- << *python

path: "{base_path}/trivial/method/sample_alice"
sample: "alice2"
canonical: "trivial"

- << *python
path: "{base_path}complex/method/usecase_bob"
sample: "robert2"
tag: "guide"

2.3 Tags for sample-tester

You may define an arbitrary set of tags for any and all elements in your manifest, the only restriction being that no
tag name you specify may begin with @ (because that is how we identify “implicit tags”; see below). Moreover, some
manifest tags are of special interest to sample-tester:

• sample: The unique ID for the sample.

• path: The path to the sample source code on disk.

• environment: A label used to group samples that share the same programming language or execution en-
vironment. In particular, artifacts with the same sample but different environments are taken to represent
the same conceptual sample, but implemented in the different languages/environments; this allows a test speci-
fication to refer to the samples only and sample-tester will then run that test for each of the environments
available.

• invocation: The command line to use to run the sample. The invocation typically makes use of two features
for flexibility:

– manifest tag inclusion: By including a {TAG_NAME}, invocation (just like any tag) can include the
value of another tag.

– tester argument substitution: By including a @args literal, the invocation tag can specify where to
insert the sample parameters as determined by the sample-tester from the test plan file.

Thus, the following would be the typical usage for Java, where each sample item in the manifest includes a
class_name tag and a jar tag:

invocation: "java {jar} -D{class_name} -Dexec.arguments='@args'"

• chdir: The working directory to be in before invoking the sample.

• (deprecated) bin: The executable used to run the sample. The sample path and arguments are appended to
the value of this tag to form the command line that the tester runs.

The sample-test runner also automatically adds certain implicit tags to manifest elements when it reads them from
YAML files. Implicit tag names all begin with the symbol @:

2.3. Tags for sample-tester 11

Sample Tester Documentation, Release 0.15.1

• @manifest_source: The full path, including filename, to the manifest file from which this particular ele-
ment was read.

• @manifest_dir: The directory part of @manifest_source, without the trailing filename. For example,
depending on your particular set-up, you may wish to reference {@manifest_dir} as part of the value of
your chdir tag.

Advanced usage: you can tell sample-tester to use different key names than the ones above. For example, to use keys
some_name, how_to_call, and switch_path instead of sample, invocation, and chdir, respectively,
you would simply specify this flag when calling sample-tester:

-c tag:some_name:how_to_call,switch_path

Here’s a typical manifest file:

type: manifest/samples
schema_version: 3
samples:
- environment: java

invocation: "{jar} -D{class} {path} @args"
path: "examples/mock-samples/java/language-v1/AnalyzeSentiment"
class: AnalyzeSentiment
jar: "./do_java"
chdir: "examples/mock-samples/java/"
sample: "language_analyze_sentiment_text"

- environment: python
bin: "python3"
path: "examples/mock-samples/python/language-v1/analyze_sentiment_request_language_

→˓sentiment_text.py"
sample: "language_analyze_sentiment_text"

- environment: bash
notice: no "bin:" because artifacts are already executable
path: "examples/mock-samples/sh/language-v1/analyze_sentiment.sh"
sample: "language_analyze_sentiment_text"

12 Chapter 2. Defining tests

CHAPTER 3

Running tests

To run the tests you have defined, do the following:

1. Prepare your environment. For example, to run tests against Google APIs, ensure you have credentials set up:

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/your/creds.json

2. Run the tester, specifying your manifest (any number of *.manifest.yaml files) and test plan (any number
of other *.yaml files):

sample-tester examples/convention-tag/language.test.yaml examples/convention-tag/
→˓language.manifest.yaml

3.1 Command-line flags

3.1.1 Basic usage

sampletester TEST.yaml [TEST.yaml ...] [MANIFEST.manifest.yaml ...]
[--envs=REGEX] [--suites=REGEX] [--cases=REGEX]
[--fail-fast]

where:

• there can be any number of TEST.yaml testplan files

• there can be any number of MANIFEST.manifest.yaml manifest files

• --envs, --suites, and --cases are Python-style regular expressions (beware shell-escapes!) to select
which environments, suites, and cases to run, based on their names. All the environemnts, suites, or cases will
be selected to run by default if the corresponding flag is not set. Note that if an environment is not selected, its
suites are not selected regardless of --suites; if a suite is not selected, its testcases are not selected regardless
of --cases.

13

Sample Tester Documentation, Release 0.15.1

• --fail-fast makes execution stop as soon as a failing test case is encountered, without executing any
remaining test cases.

Controlling the output

In all cases, sample-tester exits with a non-zero code if there were any errors in the flags, test config, or test
execution.

In addition, by default sampletester prints the status of test cases to stdout. This output is controlled by the
following flags:

• --verbosity (-v): controls how much output to show for passing tests. The default is a “summary” view,
but “quiet” (no output) and “detailed” (full case output) options are available.

• --suppress_failures (-f): Overrides the default behavior of showing output for failing test cases, re-
gardless of the --verbosity setting

• --xunit=FILE outputs a test summary in xUnit format to FILE (use - for stdout).

3.1.2 Advanced usage

The tester uses a “convention” to match sample names in the testplan to actual, specific files on disk for given languages
and environments. Each convention may choose to take some set-up arguments. You can specify an alternate conven-
tion and/or convention arguments via the flag --convention=CONVENTION:ARG,ARGS. The default convention
is tag:sample, which uses the sample key in the manifest files. To use, say, the target key in the manifest,
simply pass --convention=tag:target.

If you want to define an additional convention, refer to the documention in the repo on how to do so. If you do have
such an additional convention defined, you may use the --convention flag to select it and give it any desired
arguments, as above.

14 Chapter 3. Running tests

	Installation
	Defining tests
	Testplan
	Manifest file format
	Tags for sample-tester

	Running tests
	Command-line flags

